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NUMERICAL ANALYSIS OF THE DEVELOPING FLUID 
FLOW IN A CIRCULAR DUCT ROTATING STEADILY 

ABOUT A PARALLEL AXIS 

D. T. GETHIN AND A. R. JOHNSON 
Department of Mechanical Engineering, Singleton Park, Swansea SA3 5BE, U.K.  

SUMMARY 
A numerical analysis of the flow pattern in the inlet region of a circular pipe rotating steadily about an axis 
parallel to its own is presented. Both finite cell and finite element methods are used to analyse the problem 
and they give qualitatively similar results which show that a swirling fluid motion is induced in the pipe inlet 
region. The analyses show that the direction of swirl is opposite to that of the pipe rotation when viewed 
along the flow axis and that its magnitude depends on the speed of pipe rotation and throughflow Reynolds 
number. Neither numerical analysis predicts the marked upturn in friction factor (or pressure drop) which 
has been observed experimentally. However, a dependence on the pipe inlet boundary conditions is 
demonstrated. 
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INTRODUCTION 

Coolant passages are used extensively in highly rated power-generating machines where there is a 
requirement to remove heat to ensure reliable long-term operation. As explained in detail by 
Marlow,' they are used in turbogenerators for cooling both stator and rotor windings to prevent 
insulation breakdown. Alternatively, in the high-temperature stage of a gas turbine they are used 
to prevent premature blade failure due to the combination of high thermal loading and centrifugal 
stressing, which is explained by Morris.2 In the turbogenerator application ducts of different 
sectional shape are designed into the rotor windings and therefore their axes are aligned with that 
of rotation. Conversely, in the gas turbine the coolant passages are configured to have their axes 
normal to that of rotation. For each machine type the overall coolant circuit comprises duct 
sections which are connected by means of bends, plenums and sealed units between rotating and 
stationary elemnts; consequently the flow is complex. 

It is well known that in ducted flow the heat removed by the coolant depends on its mass flow 
rate. The latter is dictated by the choice of coolant circulating pump which induces flow around 
the circuit against the various component resistances. Under stationary conditions the pressure 
losses in the network are not straightforward to calculate; however, where rotation is present they 
can'be calculated with even less certainty. An indication of the effect of rotation on pressure drop 
in developing flow in a plain circular duct has been given by Johnson and Morris3 for flow rates 
corresponding to laminar through to turbulent flow. This work presented strong evidence to 
suggest that the effect of rotation is most significant in the developing flow region, where for the 
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range of rotational Reynolds numbers ( J) investigated the friction factor was observed to increase 
up to fourfold depending on the nature of flow conditioning fitted at the pipe entrance. However, 
under developed flow conditions rotation appeared to have little or no effect on pressure drop. 
This evidence supports the argument put forward by Morris4 in which he showed that for the flow 
configuration under consideration vorticity is generated in the duct plane under conditions of 
developing flow only. This suggests that same form of swirling flow will occur in this part of the 
duct, so before the mechanism of heat transfer in this part of the duct is considered, it is essential 
that some understanding of the flow field is obtained first. 

Hitherto, little analysis of developing isothermal flow in a tube rotating about a parallel axis has 
been undertaken. Driven by industrial requirements, some analysis of flow with heat transfer has 
been considered, but this has been confined mainly to conditions where the flow approximates to 
being fully developed. Results from work presented by Woods and Mori and Nakayama6 
and Skiadaressis and Spalding' show that a pair of counter-rotating eddies are induced by density 
variations across the pipe section. These analyses are based on a boundary layer approach and in 
the latter7 developing flow was considered. However, to retain computational simplicity, the shear 
stress associated with the streamwise velocity gradient was ignored; this renders the flow parabolic 
in nature which results in computational simplification and economy. 

Axisymmetric swirling flow has also been the subject of theoretical and experimental investi- 
gation. One of the earliest studies was carried out by Talbot,8 who performed a perturbation 
analysis on laminar swirling flow to determine the onset of instability. His prediction was also 
verified by experimental observation using a dye to facilitate flow visualization. Recently, further 
investigations of turbulent swirling flows have been carried out. For example, Sparrow and 
Chaboki' presented experimental results for turbulent swirling flows and ultimately observed 
their influence on the duct friction factor and heat transfer. It was clear that the duct friction factor 
was increased significantly (up to twenty-fold) over that for fully developed flow. These increases 
were evident where the swirling motion was most vigorous. 

As mentioned above, numerical solutions have been obtained for the governing equations and 
hitherto these have been based mainly on the approach pioneered by Spalding." During the last 
decade, however, the finite element method has been applied to the analysis of fluid flow, and its 
development parallels that of the finite difference approach. Early solutions for two-dimensional 
flows were based on streamfunction-vorticity statements of the governing equations as explained 
by Taylor and Hood.'' The approach was then extended to yield results for primitive variables 
(velocities/pressure) as described in Reference 12, and currently it is being used for analysing 
turbulent flows and developing turbulence models. 

The object of the present investigation is to examine numerically the laminar developing flow in 
a circular duct rotating steadily about a parallel axis. Both finite difference and finite element 
methodologies are used. 

GOVERNING EQUATIONS AND THEIR SOLUTION 

The equations which may be used to describe fluid flow are the Navier-Stokes eq~a t i0ns . l~  They 
express the principles of conservation of momentum for a control volume in a fluid domain. With 
reference to Figure 1, for a Cartesian co-ordinate system the governing equations may be written 

Du 1 a€J 
Dt P ax 
-= F ,  -- -+ vV'U, 

Du 1 dP 
Dt P aY 
-=F,,---++V'V, 
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Figure 1. System nomeclature and geometry 

Dw 1 aP 
Dt P az 
-= F ,  -- -+ vV’W. (3) 

The present analysis is addressed to steady operating conditions and therefore the total 
derivative terms (e.g. Du/Dt) contain convective elements only, i.e. 

Du 8u 8u au 
-= 24 -+ u -+ w -. Dt ax  ay dz 

Under such conditions the mass conservation equation may be expressed as 

au av aw 
ax ay az 
-+-+- = 0. (4) 

Equations (1H3) contain body force components F,, F ,  and F,. For many flow problems these 
do not need to be considered; however, for the present problem the derivation in Reference 2 gives 
the result that 

(5 )  

(6) 

F ,  = 0. (7) 

Also it can be shown4 that the terms 0’ (H + x) and R2y only generate a hydrostatic head across 
the duct section and that, subject to ignoring any resulting density gradients across the pipe 
section, that is expected to have little or no effect on the flow behaviour existing in the duct. 
Indeed, in the turbogenerator the duct diameter is small in comparison with the eccentricity (H) 
and therefore any density variations are expected to be extremely small and may be safely ignored. 

F ,  =R’(H + x) + 2Ru, 

F ,  = R’y - ~Ru, 
while 
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They the full momentum equations may be stated as 

au au au 1 ap 
ax ay aZ p a x  

u -+ v -+ w -= -- -+ 2Rv + vvzu, 
av au av 1 ap 
ax ay a Z  p ay 

u -+ v - + w -= -- -- 2Ru + VVZU, 
aw aw aw 1 ap 
ax ay a Z  p az u -+ v -+ w -= -- -+ vv2w. 

(9) 

This equation set is highly non-linear; however, in the present study a solution was attempted 
using both finite difference and finite element methodology. For the finite difference analysis use 
was made of a computer code which is available c~mmercially,’~ the requirement being to insert 
the pertinent body force (or inertial) contributions of equations (5) and (6). 

In the finite element analysis the Galerkin weighted residual method was employed in 
conjunction with a mixed formulation as explained in Reference 12. At an element corner node 
this gives a nodal contribution to the overall stiffness matrix of the form 

A l l  

(1 1) 

The contributions to A etc. are straightforward to determine; however, to enhance the 
convergence rate, the Newton-Raphson iteration algorithm was embodied. Also, since the 
elements used ensured inter-element continuity of value only (e.g. velocity) and not its derivative, it 
was necessary to reduce second-order derivatives using Green’s theorem. The procedure is well 
documented; see, for example, Reference 16. 

PROBLEM DISCRETIZATION, BOUNDARY CONDITIONS AND 
PRIMARY ANALYSIS 

Initial analysis of the problem was carried out using the finite element method. A comparatively 
coarse three-dimensional weighted discretization comprising 280 20-node isoparametric brick 
elements” was used as shown in Figure 2. Boundary conditions were set to reflect non-slip at the 
physical boundaries (i.e. u = u = w = 0), while at the inlet plane (z/L = 0.0) radial and azimuthal 
velocities were set to zero and the axial component assumed a uniform value over almost the entire 
face, a linear interpolation between the plane value and fixed boundary value being used at the 
near-wall element (see Figure 4 for the general form). At the downstream location, compatible 
with the observation in Reference 3, flow was assumed to be fully developed and utilization of the 
stress-type formulation obviated the need to prescribe pressure anywhere. After consideration of 
boundary conditions, the mesh shown in Figure 2 resulted in the need to solve 3423 equations 
simultaneously. 

Calculation was carried out for a duct of radius ( R )  7.0 mm and length (L)  623.0 mm fixed at an 
eccentricity (H) of 457.0 mm with a throughflow Reynolds number (Re) of 100 and a rotational 
Reynolds number (J) of 1384. This geometry was chosen to be compatible with that used in the 
experimental investigation described in Reference 3 so that where possible experimental and 
theoretical trends could be compared. Some results from this primary analysis are shown in 
Figure 3 in the form of streamlines in the duct section. These were obtained by postprocessing the 
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?= 0.1 ; 4 = 15.33 = 0.025 ; JI = 35.54 

ROTATION 
DIRECTION 

CENTRE 

@ ?'ON@ 

t= 0.275 ; (I = 0.62 t= 0.525 ; 6 = 0.22 

Figure 3. Circulation flow patterns at various streamwise locations; R = 7.0 mm, L = 623 mm, Re = 100, J = 1384 

velocity field data in the plane or the duct and plotting contours of constant streamfunction. These 
plots show quite clearly that the flow is swirling in form. The value of maximum streamfunction 
($) at the core suggests also that the circulation decays toward the outlet region of the pipe. 

Such a circulatory flow is generated by the body force (or inertial) terms appearing in equations 
(8) and (9). In developing pipe flow it is well known that radially inward flow towards the pipe 
centre is induced near the entrance," and when its components are introduced into the body force 
terms in the momentum equation (by the terms 2Qu and 2Ru), it has the characteristic of a Coriolis 
component. This will then induce a circulatory flow pattern which is axisymmetric in nature. This 
is reflected in the general form of the flow patterns presented in Figure 3, where any departure 
from an axisymmetric form may be attributed to the coarseness of the element mesh. From a 
numerical analysis viewpoint this has very considerable implications, since now the governing 
equations can be simplified to take account of this. In a cylindrical co-ordinate system azimuthal 
velocity gradients vanish and the momentum equations become14 
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and the continuity equation becomes 

av, 0, av, -+-+-= 0. 
dr r az 

These equations may be discretized using the method explained in Reference 16 to yield either 
stress or gradient boundary conditions. However, it is now necessary to solve these equations in 
the r-z plane only. For the purpose of calculation stability, upwind weighting was included in the 
formulation as explained in Reference 19. 

AXISYMMETRIC ANALYSIS 

Detail considerations 

As explained previously, both finite difference and finite element approaches were used to model 
the axisymmetric flow. Primary numerical experiments were carried out to determine the 
sensitivity of the solution to cell or mesh discretization. Initially this was carried out for the finite 
difference method, and during this part of the study it was found that to model the assumed 
downstream condition of developed flow it was necessary to extend the mesh to represent a pipe of 
length 1 m (as opposed to 0.623 m), since the velocity profiles were not fully developed at this latter 
location at the more extreme operating conditions. Using a process of trial and inspection, it was 
concluded that a mesh comprising 15 radial and 90 axial divisions gave a solution which was 
sufficiently independent of discretization. The grid is shown in Figure qa); note that every tenth 
plane is shown in the axial direction. Additionally the subdivision was weighted to give a fine 
discretization adjacent to the wall and at the inlet region to the pipe. 

--- Axial velocity profile on inlet boundary 

I I 
J 

(a) Finite 
difference 
grid 

Finite 
element 
discretisat ion 

L 
Figure 4. The final finite difference/element domain discretization 
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A similar process of assessing the sensitivity of the solution to mesh discretization was carried 
out for the finite element method. Additionally two formulation types were considered, the first to 
yield stress and the second to yield normal velocity gradients as the natural boundary conditions. 
Again, for convenience and to enable direct comparison, a pipe of 1 m length was used, although 
the finite element approach does enable developing flow boundary conditions to be dealt with as 
explained in Reference 20. Numerical experimentation suggested that a mesh comprising 14 radial 
and 30 axial divisions was adequate, with fine subdivision being employed in the inlet region and 
in the axial direction only. Figure 4(b) shows the discretization, where every fourth plane is shown 
in the axial direction. 

Calculations were carried out for a throughflow Reynolds number (Re) of 500 and a rotational 
Reynolds number (.I) of 400. Some detailed results from this analysis are shown in Figures 5-7. 
Figure 5(a) illustrates the variation of the predicted radial velocity field along the axis of the pipe at 
a given radial location using both of the numerical approaches. In both cases the analyses suggest 
that there is radial flow towards the pipe centreline which is very pronounced in the inlet region 

Finite difference 
Re = 500 

Radial Location = L.55mm 
Pipe radius = 7 OB5mm 

J = 400 

Flnite element 
(normal velocity gradients 
boundary condition) 

I I I 
0 25 50 75 100 

Axial location (mm) 

Figure 5(a). Variation of radial velocity with axial location near the pipe inlet 

Finite element [Z:1.?5mm) 

Finite element 

(Z=ll.Omm) 

0 -20 - 4 0  -60 0 -20 

Radial velocity (mm/sl 

Figure 5(b). Radial velocity at different radial locations at the pipe inlet; Re=500, 5=400, R='7085 mm 
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(within the first 25 mm). Additionally it can be seen that there is some difference in the predicted 
magnitude using both methods, the finite difference method giving the higher value. This may be 
attributed in part to the nature of the inlet boundary condition employed in the finite element 
method. In the figure, two curves are illustrated for this analytical approach. Curve 1 corresponds 
to the boundary condition where the inlet plane velocity is interpolated to zero over the near-wall 
element (see Figure 4) and curve 2 where the inlet velocity is truly plain. The latter approximates 
most closely that employed in the finite cell analysis and which, as a consequence, gives the closest 
agreement with it. 

Figure 5(b) illustrates the radial variation of radial velocity in the pipe inlet region for both 
numerical schemes. The two approaches show noticeable differences: for the finite element scheme 
the radially inward flow is confined to an area close to the pipe wall, whereas for the finite cell 
method the radial inflow is significant over a larger section of the pipe. This difference in radial 
velocity profiles is reflected clearly in the nature and extent of the swirling flow patterns shown in 
Figure 6. 

Figure 6(a) illustrates the variation of the azimuthal velocity component at  a fixed radial 
location over the pipe length. From this it can be seen that there is considerable swirling motion, 
particularly near the pipe inlet. However, the magnitude of the swirling motion is dependent on 
the numerical procedure adopted. The finite cell method predicts the most vigorous activity which 
extends over a significant length of the pipe, and this is compatible with the higherradial velocities 
and radial change in radial velocity shown in Figure 5. For the finite element results in Figure 6(a) 
the effect of using two inlet boundary conditions is shown (curves 1 and 2) and these correspond to 
those discussed for Figure 5. The figure also shows the result of using a stress-type formulation and 
this clearly illustrates a reduced circulatory motion, although for this latter analysis the 
downstream boundary conditions were not updated using the method described in Reference 20. 
Additionally it can be seen that the swirling motion is in the opposite direction to pipe rotation 
when viewed from the inlet end; this is compatible with the Coriolis driving mechanism involved 
(see Figure 3 also). 

Re = 500 
J = 400 
Radial location = 4.55mm 
Pipe radius = 7.085mm 

- m i n i t e  difference 

' 40 

ment (gradient boundary 
condition) 

Finite etement (stress boundary 

0 250 500 750 1000 

Axial location (mm) 

Figure qa). Variation of azimuthal velocity with axial location 
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1.0 

r /R  0.5 

0 

@ Finite element prediction 

@ Finite cell prediction >,= Z = 52.63 55.0 

0 25 so 0 25 50 

VO (mm/s) 

0 25 50 0 25 50 

VO (mm/s) 

Figure 6(b). Comparison of azimuthal velocity components at various axial locations; Re=500, 5=400 

The variation of azimuthal velocity with radial location is shown for four axial locations in 
Figure 6(b). Close to the pipe inlet (about 10 mm downstream) the velocity profile suggests that 
there is a central core (up to r /R  = 0 7 )  which is subject to solid body rotation with high shearing 
close to the pipe wall. Further downstream, however, the maximum swirl velocity occurs nearly 
halfway between the centreline and the wall. From Figure 6 it is clear that the two numerical 
methods predict flow patterns where the magnitude of the swirl action is different. The finite cell 
method suggests that even when the radially inward flow which is responsible for the swirl action 
is confined to a small section close to the pipe inlet, the flow circulates for a long distance 
downstream. Conversely, the finite element method indicates that the circulatory flow is not so 
strong and does not extend so far downstream. However, there is no experimental evidence to 
confirm the accuracy of either method for the flow configuration under consideration. 

Figure 7 illustrates the near-wall axial pressure profile predicted using both numerical 
techniques. Additionally the figure includes that from a closed-form solution for fully developed 
pipe flow which may be used to provide a useful datum for comparison. In the developed flow 
region the pressure gradient which may be deduced from either numerical result does not agree 
precisely with that obtained from the closed-form solution. However, marginally better agreement 
was obtained from the finite element solution for a stationary pipe. Additionally neither numerical 
method predicted significant changes in the axial pressure field when the pipe was either stationary 
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Re = 500 
J =LOO Finite dtf ference 

0 250 500 750 1000 

Axial location (mm) 

Figure 7. Axial pressure variation at the pipe wall 

or rotating. This is in some conflict with the experimental data presented in Reference 3, but in this 
work it was shown that the friction factor (or pressure gradient indirectly) was dependent on the 
inlet configuration which must therefore affect the nature of the flow into the experimental section. 
Such minor changes in predicted pressure drop for both stationary and rotating ducts may be 
anticipated, since the azimuthal velocity component is weakly linked into the radial momentum 
equation only (i.e. equation (12)). It is not present in the axial momentum equation which has the 
dominant influence on the axial pressure gradient. 

Global analysis 

Figure 8 illustrates the results from a series of calculations to investigate the effect of varying 
both throughflow and rotational speed on the magnitude of the swirl. For these calculations the 
axial velocity profile at the pipe inflow plane was assumed to be plain in the centre with linear 
interpolation to zero over the near-wall element. 

Figure8(a) shows the effect of varying rotational speed for a fixed throughflow Reynolds 
number. From these curves it is evident that the magnitude of the swirl increases linearly with the 
rotational speed. It may be noted also that the position of the peak swirl veIocity depends on the 
axial position; however, in all cases it occurs at the same radial location. 

The behaviour where different throughflow Reynolds number effects are investigated is shown 
in Figure 8(b). These results show that the magnitude of the swirl component varies in a complex 
manner. Close to the pipe inlet the magnitude of the swirl component is greatest for the lowest 
throughflow Reynolds number. This is a surprising result since the radial velocity component is 
smallest for this condition (see Figure 9(a)). Nearly the same condition prevails at the next axial 
location, while at the third axial location ( z=  184 mm) the case where the throughflow velocity is 
highest gives the strongest swirling motion. This prevails to the pipe outlet where considerable 
swirl persists for the highest throughflow velocity. The results in Figure 8 suggest therefore that 
the position of maximum swirl depends on the flow rate of fluid through the duct and this is shown 
in Figure 9. 
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Figure 9(a). Radial velocity in the pipe inlet region for different throughflow Reynolds number; J =400 
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Figure 9(b). Azimuthal velocity over the pipe length for various throughflows; J =400 

Radial velocity profiles over the pipe length are shown in Figure 9(a), and their variation has 
been presented since these provide the motivation for the swirl action. As expected, the magnitude 
of the radially inward velocity increases with throughflow Reynolds number. The resulting swirl is 
shown in Figure 9(b) and it is clear that the different flow rates result in different swirl patterns. 
The analysis suggests that despite the different radial velocities the magnitude of the peak swirl 
does not differ significantly; however, for the higher throughflow, swirling action persists much 
further down the pipe since active radial flow occurs over a longer distance and thereby energizes 
it. 
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Numerical eficiency 

The solution of the same problem on the same computer enabled a direct comparison of the 
efficiency of the two numerical techniques. For the finite cell analysis the grid comprised 1350 cells 
and therefore 5400 equations were solved to yield the three velocity components and the pressure 
field. The resulting equation set is tridiagonal in naturelo and this is amenable to very rapid 
solution. For the finite element analyses there was a requirement to solve for 4132 unknown 
variables and this was achieved by adopting a Gaussian-elimination-type method.” For the finite 
cell method a complete solution was obtained in about 88 min, while for the finite element method, 
based on the need for seven iterations to achieve convergence (at 900 s/iteration), the time required 
was 105 min. This suggests that the finite cell method is more efficient and this arises from the 
tridiagonal nature of the equations. Some improvement in the efficiency of the finite element 
approach may be achieved by decoupling the solution of the azimuthal momentum equation. This 
is probably feasible since it contains velocity terms only, and its decoupling will result in a more 
closely banded matrix which will be solved more efficiently by the Gaussian elimination 
algorithm. 

CONCLUSIONS 

A finite element and finite cell analysis of flow in a circular duct rotating about an axis parallel to 
its own has been presented. The following conclusions can be drawn from this work. 

1. The combined rotation and radial flow in the pipe inlet produces a swirling flow pattern in 
the pipe which is opposite in direction to that of pipe rotation when viewed from the inlet 
end. This is due to the introduction of a Coriolis-type term into the azimuthal and radial 
momentum equations. 

2. The strength of the swirling motion depends on and is proportional to the rotational speed, 
while its extent depends on the flow rate through the tube. At the higher throughflow the 
swirl is least significant near the pipe inlet but becomes more impottant further downstream, 
a trend which is reversed at the lower flow rates. This is due to the different magnitude of the 
radially inward velocities for the different conditions. 

3. For the finite element solution the normal velocity gradient formulation gives the closest 
agreement with the finite cell analysis. Also the strength of the swirling motion depends on 
the shape of the inlet velocity profiles, the closest agreement between numerical methods 
being achieved when the shapes agree most closely. Confirmation of this sensitivity to inlet 
conditions is provided by experimentally measured pressure drops. 

F,, F,, F ,  
H 
J 
L 
R 
Re 
U 
d 
P 
r, z ,  a) 

APPENDIX: NOMENCLATURE 

body force terms in equations (1H3) 
pipe eccentricity (see Figure 1) 
rotational Reynolds number ( =Rd2/v) 
pipe length 
pipe radius 
throughflow Reynolds number (= Ud/v )  
mean axial velocity 
pipe diameter 
pressure 
co-ordinate directions (cylindrical) 
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time 
velocity components (Cartesian axes) 
velocity components (cylindrical system) 
co-ordinate directions (Cartesian) 
streamfunction 
angular velocity (rad s-’) 
fluid kinematic viscosity 
fluid density 
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